Содержание:
Введение
1.Характерные свойства электролитов.
- Удельная
- Молярная электропроводности.
- Эквивалентная электропроводность.
2. Подвижность ионов.
- Зависимость от температуры.
- Зависимость от кристаллохимических радиусов.
3. Аномальная подвижность ионов гидроксония и гидроксила.
4. Число переноса.
5. Закон разбавления Оствальда.
6. Электрофоретический и релаксационный эффекты.
в электролитах, их влияние на электрическую проводимость.
7. Методы, способы и приборы, измеряющие электропроводность электролитов.
Применение.
Список используемой литературы.
Введение
Электролиты – вещества, подвергающиеся в растворах или расплавах электролитической диссоциации и проводящие электрический ток за счет движения электронов.
К электролитам относятся вещества с ионной или сильнополярной ковалентной связью. Первые в виде ионов существуют еще до перевода их в растворенное или расплавленное состояние. К электролитам относятся соли, основания и кислоты.
Электролиты являются проводниками втрого рода. Передача электричества в них осуществляется движением положительных и отрицательных ионов, а в проводниках первого рода (металлах) – движением электронного газа.
Сила электролита в значительной степени зависит от природы растворителя. Мерой воздействия растворителя является диэлектрическая проницаемость, значение которой для воды весьма высока и при 20 град. Равно 81. Именно для воды свойство ослаблять химические связи между ионами особенно сильно.
Различают сильные и слабые электролиты.
Сильные электролиты при растворении в воде полностью диссоциируют на ионы. К ним относятся: почти все растворимые соли; многие неорганические кислоты (Например, ;
Гидроксиды щелочных и щелочноземельных металлов.
Слабые электролиты при растворении в воде незначительно диссоциируют на ионы. К ним относятся: почти все органические кислоты; некоторые неорганические кислоты (угольная и сернистая), многие гидроксиды, аммиак. Вода также является слабым электролитом.
Деление электролитов на сильные и слабые в
некоторой степени условно, т. к. оно отражает не свойства самих электролитов, а
их состояние в растворе. Последнее зависит от концентрации, природы растворителя, температуры, давления и др.
По количеству ионов, на которые диссоциирует в растворе одна молекула, различают:
бинарные, или одно-одновалентные электролиты (обозначаются 1-1 электролит,
например КС1),
одно-двухвалентные электролиты (обозначаются 1-2 электролит,
например CaCl2) и т. д.
Электролиты типа 1-1, 2-2, 3-3 и т. п. называются симметричными,
типа 1-2, 1-3 и т. п. - несимметричными.
Свойства разбавленных растворов слабых электролитов удовлетворительно
описываются классической теорией электролитической диссоциации – процесса распада электролита на ионы при растворении его в воде.
При растворении в воде веществ с ионной связью полярные молекулы воды притягиваются полюсами к положительно заряженным ионам вещества. В результате электростатическое притяжение между ионами в решетке понижается и ионы переходят в раствор.
1.Характерные свойства электролитов.
1.1.Удельная и молярная электропроводности электролитов.
Способность растворов электролитов проводить электрический ток называется электрической проводимостью. Она зависит от природы электролита и растворителя, концентрации, температуры и некоторых других факторов.
Различают удельную и молярную электрическую проводимости.
Удельная электрическая проводимость раствора электролита x – это электрическая
проводимость объема раствора, заключенного между двумя параллельными
электродами, имеющими площадь по одному квадратному метру и расположенными на
расстоянии одного метра друг от друга.
Удельная электрическая проводимость является величиной, обратной удельному
сопротивлению ρ :
(1)
Удельное сопротивление определяется по уравнению
(2)
где R — общее сопротивление проводника. Ом; l — длина проводника, м; s —
поперечное сечение проводника, м2. Из уравнения (2) имеем:
ρ=Rs/l. (3)
Отсюда единица удельного сопротивления, выражается величиной [ρ]=0м м.
Размерность удельной электрической проводимости выражается
обратной величиной x=1/(0м м) = Oм-l•м-l = Cм м-1.
Повышение температуры на 1 К увеличивает удельную электрическую проводимость
примерно на 2 - 2,5%. Это объясняется понижением вязкости раствора и уменьшением
гидратации ионов, а для растворов слабых электролитов увеличением их степени
диссоциации.
Зависимость удельной электрической проводимости разбавленных растворов от
температуры описывается эмпирическим уравнением
xT = x298 [1 + α (T - 298) +β (- 298)2] (4)
β = 0,0163 (α - 0,0174),
где x298 – удельная электрическая проводимость при 298 К;
α и β - температурные коэффициенты электрической проводимости.
Коэффициенты α и β зависят от природы электролита:
для сильных кислот α = 0,0164,
для сильных оснований α = 0,0190,
для солей α = 0,0220.
В растворах слабых электролитов диссоциация молекул электролита на ионы
увеличивает объем раствора. Поэтому повышение давления в соответствии с
принципом смещения подвижного равновесия Ле Шателье – Брауна уменьшает степень
диссоциации электролита и, следовательно, электрическую проводимость. Заметное
влияние на электрическую проводимость раствора слабого электролита оказывает
только давление порядка сотен и тысяч атмосфер. Например, повышение давления до
2000 атм уменьшает x для уксусной кислоты на 40%.
При изучении электрической проводимости растворов целесообразно пользоваться
молярной электрической проводимостью Λ ,которая равна электрической проводимости объема раствора электролита, содержащего 1 г/моль растворенного вещества и находящегося между двумя параллельными электродами, расположенными на расстоянии одного метра друг от друга.
Для слабых электролитов изменение молярной электрической проводимости от концентрации раствора связано в основном со
степенью диссоциации и для сильных электролитов - с межионным взаимодействием.
Удельная и молярная электрические проводимости связаны между собой соотношением:
Λ = xVм = x/cм (5)
где Vм — число кубометров раствора, содержащего 1 г/моль электролита; См —
концентрация электролита, выраженная в моль/м3. Для практических расчетов можно
использовать также размерности в производных единицах СИ: [χ]=См см-1; [Λ] = Ρм
см2 •моль-1; [с] = моль/л (моль/дм3). При этом вместо уравнения (5) получаем:
(6)
При вычислении молярной электрической проводимости нужно указывать формульную
единицу, для которой она вычислена. Так, например, при 298 К в водном растворе
при предельном разбавлении A(MgCl2)=258 · 104 См м2 • моль-1, но Λ (MgCl2) = 129 • 104 См • м2 моль-1.
Молярная электрическая проводимость с уменьшением концентрации раствора
увеличивается и при с Λ298 0 стремится к некоторому предельному максимальному
значению Λ θΛ298 которое называется молярной электрической проводимостью при
предельном (бесконечном) разбавлении.
Зависимость молярной электрической проводимости от температуры можно представить
уравнением:
ΛТ = Λ298 [1+α (T-298)], (7)
где ΛТ и Λ298— молярные электрические проводимости при температуре Т = 298 К; α— температурный коэффициент электрической проводимости.
Отсюда следует, что температурные коэффициенты удельной и молярной
электрической проводимости одинаковы.
Рассмотрим зависимость молярной электрической проводимости раствора бинарного
электролита от скорости движения ионов. Пусть электрический ток проходит через
раствор бинарного электролита, помещенный в стеклянную трубку с поперечным
сечением s м2, причем расстояние между электродами равно l м и разность
потенциалов между ними равна Е В. Обозначим через u"+ и u"- скорости движения
катионов и анионов, м/с, а через см концентрацию раствора электролита,
г/моль/м3. Если степень диссоциации электролита в данном растворе равна α, то
концентрации катионов и анионов равны α см г/моль/м3. Подсчитаем количество
электричества, которое переносится через поперечное сечение трубки за 1 с.
Катионов за это время пройдет через сечение u"+ sαcм г/моль и они перенесут
u"+ sαcм F Кл электричества, так как г/моль переносит количество электричества, равное числу Фарадея F.
Анионы в обратном направлении перенесут u"- sαcм F Кл электричества.
Сила тока I, т. е. общее количество электричества, проходящее
через данное поперечное сечение раствора в 1 с, равна сумме количеств
электричества, переносимого ионами в обоих направлениях:
I = (u"+ + u"-) sαcм F u"+ = u+ (10)
Скорость движения ионов u"+ и u"- прямо пропорциональна напряженности поля E/l:
u"+ = u+ и u"- = u- (11)
где u+ и u- — абсолютные скорости ионов.
Абсолютной скоростью движения иона называется его скорость при единичном
градиенте потенциала в 1 В м-1; ее размерность [ui] = В м2 с-1
Подставляя значения u"+ = u" - из уравнения (11) в (10), получаем
I = αF(u+ + u-) . (12)
С другой стороны, сопротивление R можно выразить через Λ. Учитывая, что из (11)
ρ= 1/х и из (5) х = см Λ;, п ρ олучаем из (2) выражение R=l/(хs) = l/(cмΛs). Из
закона Ома
I = Λ; . (13)
Приравнивая правые части уравнений (12) и (13) и решая равенство относительно Λ,
получаем
Λ = αF (u+ + u-) (14)
Для сильных электролитов α=1 и
Λ = F(u+ + u-) (15)
Произведения
Fu+= λ+ и Fu-= λ- (16)
Называются подвижностями ионов; их размерность [λи] = См м моль -1. Например, в
водном растворе при 298 К подвижности катионов К +, Ag+ и Mg2+ равны 73,5 · 104;
61,9 · 104 и 53,0 · 104 См м2 · моль-1 и подвижности анионов С1-1, SO42- и
СН3СОО- - 76,3 104; 80,0 · 104 и 40,9 · 104 См м2 моль-1 соответственно.
Вводя значения λ+ и λ- в (14) и (15), получаем для слабых электролитов:
Λ= α ( λ+ + λ-) (17)
и для сильных электролитов
Λ= λ+ + λ- (18)
Для предельно разбавленного раствора λ = 1, поэтому
Λ∞= λ + λ (19)
где λ и λ - подвижности ионов при предельном разведении. Уравнение (19),
справедливое как для сильных, так и для слабых электролитов, называется законом
Кольрауша, согласно которому молярная электрическая проводимость при предельном
разведении равна сумме подвижностей ионов при предельном разведении. Из
уравнения (19) и (16) получаем:
Λ∞= F(u + u) (20)
где F – постоянная Фарадея; u и u - абсолютные скорости движения ионов при
предельном разведении.
1.2. Эквивалентная электропроводность
Эквивалентная электропроводность λ [в см2/(г-экв Ом) вычисляется из соотношения:
(21)
где с — эквивалентная концентрация, г-экв/л.
Эквивалентная электропроводность — это электропроводность такого объема (см3)
раствора, в котором содержится 1 г-экв растворенного вещества, причем электроды
находятся на расстоянии 1 см друг от друга. Учитывая сказанное выше относительно
удельной электропроводности, можно представить себе погруженные в раствор
параллельные электроды на расстоянии 1 см., имеющие весьма большую площадь. Мы
вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь,
равную -см2. Электропроводность раствора, заключенного между выделенными
поверхностями таких электродов, имеющими площадь, равную - см2, и есть
эквивалентная электропроводность раствора. Объем раствора между этими площадями
электродов равен, очевидно, -см3 и содержит один грамм-эквивалент соли.
Величина , равная 1000/с см3/г-экв, называется разведением. Между электродами,
построенными указанным выше способом, при любой концентрации электролита
находится 1 г-экв растворенного вещества и изменение эквивалентной
электропроводности, которое обусловлено изменением концентрации, связано с
изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением
степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной
атмосферой.
Мольная электропроводность электролита — это произведение эквивалентной
электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего
вещества.
На рис. 1 показана зависимость эквивалентной электропроводности некоторых
электролитов от концентрации. Из рисунка видно, что с увеличением с величина λ
уменьшается сначала резко, а затем более плавно.
Интересен график зависимости λ от (2). Как видно из графика (Рис. 2), для
сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением ,
что соответствует эмпирической формуле Кольрауша (1900);
λ= λ∞ - А (22)
где λ∞ - предельная эквивалентная электропроводность при бесконечном разведении:
с → 0; φ → ∞
Значение λ сильных электролитов растет с увеличением φ и ассимптотически
приближается к λ∞. Для слабых электролитов (СН3СООН) значение λ также растет с
увеличением φ, но приближение к пределу и величину предела в большинстве случаев
практически нельзя установить. Все сказанное выше касалось электропроводности
водных растворов. Для электролитов с другими растворителями рассмотренные
закономерности сохраняются, но имеются и отступления от них, например на кривых
λ-с часто наблюдается минимум (аномальная электропроводность).
2. Подвижность ионов
Свяжем электропроводность электролита со скоростью движения его ионов в
электрическом поле. Для вычисления электропроводности достаточно подсчитать
число ионов, проходящих через любое поперечное сечение электролитического сосуда
в единицу времени при стандартных условиях, т. е. при напряженности поля, равной
1 в/см. Так как электричество переносится ионами различных знаков, движущимися в
противоположных направлениях, то общее количество электричества, проходящее
через раствор в 1 сек, т. е. сила тока I, складывается из количеств
электричества, перенесенных соответственно катионами I+ и анионами I-:
I = I++ I- (23)
Обозначим скорость движения катионов через и" (в см/сек), скорость движения
анионов через v" (в см/сек), эквивалентную концентрацию ионов через сi (в
г-экв/см3), поперечное сечение цилиндрического сосуда через q (в см ),
расстояние между электродами через l (в см) и разность потенциалов между
электродами через Е (в В). Подсчитаем количество катионов, проходящих через
поперечное сечение электролита в 1 сек. За это время в одну сторону через
сечение пройдут все катионы, находившиеся в начальный момент на расстоянии не
более чем и" см от выбранного сечения, т. е. все катионы в объеме u"q.
Количество катионов n+, прошедших через поперечное сечение в 1 сек:
n+ = u"qc+
Так как каждый грамм-эквивалент ионов несет согласно закону Фарадея F = 96485 K
электричества, то сила тока (в а):
I+ = n+ F = u"qc+F
Для анионов, скорость движения которых равна v", рассуждая таким же образом,
получим
I-= v" qc-F
Для суммарной силы тока (эквивалентные концентрации ионов одинаковы, т. е. c+ =
c- = ci ):
I = I++ I-= (и" + v") qciF (24)
Скорости движения ионов и" и V" зависят от природы ионов, напряженности поля
E/l, концентрации, температуры, вязкости среды и т. д.
Пусть все факторы, кроме напряженности поля, постоянны, а скорость движения
ионов в жидкости постоянна во времени при постоянной приложенной силе, если
среда, в которой они движутся, обладает достаточной вязкостью. Следовательно,
можно считать, что скорость ионов пропорциональна приложенной силе, т. е.
напряженности поля:
и" = u ; v" = v (25)
где и и v—коэффициенты пропорциональности, которые равны скоростям ионов при
напряженности поля, равной 1 в/см.
Величины и и v называются абсолютными подвижностями ионов. Они измеряются в
см2/(сек·в).
Подставив выражение (25) в уравнение (24), получим
I = (26)
По закону Ома
I = = EK (27)
Подставляем в уравнение (27) значения К и, приравняв правые части уравнении (26)
и (27) будем иметь:
(28)
Решив уравнение (28) относительно λ, получим
(29)
Для сильных электролитов, диссоциацию которых считают полной, отношение 1000
сi/с = 1; для слабых электролитов 1000 сi/с = α. Введем новые обозначения:
U = uF; V=vF (30)
и назовем величины U и V подвижностями ионов. Тогда для сильных электролитов
λ = U + V (31)
а для слабых электролитов
λ = (U + V)α (32)
При бесконечном разведении (т. е. при φ → ∞, U → U∞, V→ V∞ и α → 1) получим
λ∞ = U∞ + V∞ (33)
как для сильных, так и для слабых электролитов. Величины U∞ и V∞, очевидно,
являются предельными подвижностями ионов. Они равны эквивалентным
электропроводностям катиона и аниона в отдельности при бесконечном разведении и
измеряются в тех же единицах, что λ или λ∞ т. е. в см2/ (ом • г-экв). Уравнение
(33) является выражением закона К.ольрауша: эквивалентная электропроводность при
бесконечном разведении равна сумме предельных подвижностей ионов.
Подвижности U и V в уравнении (32) зависят от концентрации (разведения),
особенно для сильных электролитов, где при больших концентрациях значения U и V
меньше, чем U∞ и V∞ , вследствие возрастающей взаимной связанности ионов разных
знаков (влияние ионной атмосферы). То же имеет значение и для слабых
электролитов, но в меньшей степени, так как там концентрация ионов мала.
Нужно помнить, что величины U и V (а следовательно, и U∞ и V∞) относятся к 1 г -
экв данных ионов.
Подвижность является важнейшей характеристикой ионов, отражающей их
специфическое участие в электропроводности электролита.
В водных растворах все ионы, за исключением ионов H3О+ и ОН-, обладает
подвижностями одного порядка. Это значит, что абсолютные подвижности ионов (и и
v)—также величины одного порядка, равные нескольким сантиметрам в час (K+—2,5;
ОН-— 4,16; H3О+ — 10 см/ч).
Если ионы окрашены, то их перемещение при известных условиях можно измерить
непосредственно и, таким образом, определить абсолютные подвижности.
Пользуясь таблицей предельных подвижностей ионов и законом Кольрауша, можно
легко вычислить предельную электропроводность соответствующих растворов.
Эквивалентная электропроводность растворов солей выражается величинами порядка
100—130 см2/(г-экв • ом). Ввиду исключительно большой подвижности иона
гидроксония величины λ∞ для кислот в 3—4 раза больше, чем λ∞ для солей. Щелочи
занимают промежуточное положение.
Движение иона можно уподобить движению макроскопического шарика в вязкой среде и
применить в этом случае формулу Стокса:
(34)
где е—заряд электрона; z—число элементарных зарядов иона; r—эффективный радиус
иона; η — коэффициент вязкости; Е/1 — напряженность поля.
Движущую силу — напряженность поля Е/1 при вычислении абсолютных подвижностей
принимаем равной единице. Следовательно, скорость движения ионов обратно
пропорциональна их радиусу. Рассмотрим ряд Li+, Na+, К+. Так как в указанном
ряду истинные радиусы ионов увеличиваются, то подвижности должны уменьшаться в
тон же последовательности. Однако в действительности это не так. Подвижности
увеличиваются при переходе от Li+ к К+ почти в два раза. Из этого можно сделать
заключение, что в растворе и в ионной решетке ионы обладают разными радиусами.
При этом чем меньше истинный (“кристаллохимический”) радиус иона, тем больше его
эффективный радиус в электролите. Это явление можно объяснить тем, что в
растворе ионы не свободны, а гидратированы или (в общем случае) сольватированы.
Тогда эффективный радиус движущегося в электрическом поле иона будет
определяться в основном степенью его гидратации, т. е. количеством связанных с
ионом молекул воды.
Связь иона с молекулами растворителя, в частности с молекулами воды,
ионно-дипольная, а так как напряженность поля на поверхности иона лития гораздо
больше, чем на поверхности иона калия (ибо поверхность первого меньше
поверхности второго, а радиус, т. е. расстояние диполей воды от эффективного
точечного заряда в центре иона, меньше), то степень гидратации иона лития больше
степени гидратации иона калия. Согласно формуле Стокса многозарядные ионы должны
обладать большей подвижностью, чем однозарядные. Скорости движения многозарядных
ионов мало отличаются от скоростей движения однозарядных, что, очевидно,
объясняется большей степенью их гидратации вследствие большей напряженности
поля, создаваемого многозарядными ионами.
Необходимо помнить о том, что применимость формулы Стокса к отдельным ионам
недостаточно обоснована. Формула Стокса описывает движение шара в непрерывной
среде. Растворитель не является для ионов такой средой, поэтому все вытекающие
из формулы Стокса выводы, касающиеся гидратации ионов, носят лишь качественный
характер и, по-видимому, применимы для количественной оценки движения лишь
больших шарообразных ионов типа N(С4H9)4+.
2.1. Зависимость подвижности ионов от температуры
Предельные подвижности ионов, а также удельная электропроводность электролитов
всегда увеличиваются с повышением температуры (в противоположность
электропроводности металлов, которая " уменьшается с повышением температуры).
Температурный коэффициент подвижности l/u291(∆U/∆T ) оказывается довольно
большим (~0,02); при нагревании раствора на 1 °С подвижность, а следовательно, и
электропроводность возрастают примерно на 2%, что приводит к необходимости
применять термостаты для точного измерения электропроводности. Наибольший
температурный коэффициент характерен для ионов с относительно малой подвижностью
и наоборот. Наличие положительного температурного коэффициента подвижности
ионов, по-видимому, объясняется уменьшением вязкости с температурой.
Если это так, то, исходя из формулы Стокса (34), можно прийти к выводу, что
= const (35)
т. е. произведение подвижности (а следовательно, и электропроводности), на
коэффициент вязкости является величиной постоянной и, следовательно,
температурный коэффициент подвижности должен быть равен величине, обратной
температурному коэффициенту вязкости. Действительно, температурный коэффициент
подвижности большинства ионов в водных растворах равен 2,3—2,5%, в то время как
величина, обратная температурному коэффициенту вязкости воды, равна 2,43%.
Однако следует ожидать применимости закона Стокса и, следовательно, уравнения
(XVIII, 18) лишь к ионам достаточно большого объема (см. стр. 403).
Произведение предельной подвижности иона (U0 , V0) на вязкость η0 растворителя
почти не изменяется в широком диапазоне температур. Например, для ацетат-иона в
водном растворе произведение V0η0 практически постоянно:
t°С- .......... О 18 25 59 75 100 128 153
V0η0.......... 0,366 0,368 0,366 0,368 0,369 0.368 0,369 0,369
В неводных растворах произведение V0η0 (или U0η0) также почти не изменяется с
изменением температуры, но эта закономерность иногда и не совсем соблюдается.
Так как λ∞ = U0 + V0 то эквивалентная электропроводность при бесконечном
разведении с температурой всегда возрастает.
При конечной концентрации связь эквивалентной электропроводности с подвижностью
несколько сложнее. Для слабого электролита λ =(U + V) α. Если с повышением
температуры подвижности ионов возрастают, то степень диссоциации может и
уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании
уменьшается, т. е. силы взаимодействия между ионами увеличиваются.
Следовательно, кривая зависимости электропроводности от температуры может иметь
максимум.
Аналогичное явление наблюдается и в сильных электролитах, так как при нагревании
не только увеличивается подвижность ионов вследствие уменьшения вязкости, но
уменьшения диэлектрическая проницаемость, что приводит к увеличению плотности
ионной атмосферы, а следовательно, к увеличению электрофоретического и
релаксационного торможений.
2.2. Зависимость подвижности ионов от кристаллохимических радиусов
Рассмотрим ряд ионов: Li+, Na+, K+. Как следует из уравнения движения, скорость
движения ионов обратно пропорциональна их радиусу. В указанном ряду истинные
радиусы ионов увеличиваются, и подвижности должны уменьшаться в той же
последовательности.
В действительности в растворах подвижности ионов увеличиваются. Из этого можно
сделать заключение, что в растворе и в ионной решетке ионы обладают различными
радиусами. Чем меньше кристаллохимический радиус иона, тем больше его
эффективный радиус в электролите. Это явление можно объясни тем, что в растворе
ионы не свободны, а гидратированы или в общем случае сольватированы. Эффективный
радиус движущегося электрическом поле иона будет определяться гидратации,
количеством связанных с ионом молекул воды.
Многовалентные ионы в силу большой гидратной оболочки обладают минимальной
подвижностью, так как гидратированы в наибольшей степени.
Ионы гадроксила и гидроксония обладают аномальной подвижностью - подвижность в
растворах максимальна.
Предложено несколько теорий, объясняющих подвижность гидроксония и гидроксила.
Одна .из теорий подвижность
H3O+ , ОН- объясняет с помощью эстафетного механизма. По теории эстафетного
механизма происходит перескок протона с одной молекулы на другую, сопротивление
электролита минимально, следовательно, подвижность увеличивается:
H3O+ + H2O = H2O + H3O+
3. Аномальная подвижность ионов гидроксония и гидроксила.
Аномально высокая подвижность ионов гидроксония и гидроксила была отмечена
давно.
Раньше считали, что в растворе существуют ионы водорода, большая скорость
движения которых объясняется исключительно малым радиусом ионов.
Несостоятельность этого утверждения стала очевидной после того, как установили,
что в растворе имеются не ионы водорода H+, а ионы гидроксония Н3О+. Эти ионы,
так же как и ионы гидроксила, гидратированы, и эффективные радиусы их имеют тот
же порядок, что и радиусы других ионов. Следовательно, если бы механизм переноса
электричества этими ионами был обычным, то подвижность их даже не отличалась бы
существенно от подвижностей других ионов. Это и наблюдается в действительности в
большинстве неводных растворов. Аномально высокая подвижность H3O+ и ОН-
проявляется только в растворах в воде и простейших спиртах, что, очевидно,
связано с особенностями переноса электричества этими ионами, которые отличаются
от других ионов тем, что являются ионами самого растворителя – воды.
Известно, что процесс диссоциации воды протекает по схеме:
H2O + H2O = OH- + H3O+
│_H+_↑
и сводится к переходу протона, от одной молекулы воды, к другой.Образовавшиеся
ионы гидроксония непрерывно, обмениваются. протонами с окружающими молекулами
воды, причем обмен протонами" происходит хаотически. Однако при создании
разности потенциалов кроме беспорядочного движения возникает и направленное:
часть протонов начинает двигаться по силовым линиям поля, направляясь к катоду,
и, следовательно, переносит электричество.
Таким образом, электричество переносится в основном не ионами гидроксония, хотя
и они участвуют в переносе электричества, а протонами, перескакивающими от одной
молекулы воды к другой ориентированно, по силовым линиям поля. Надо учитывать
также" необходимость поворота вновь образовавшиеся молекулы воды, которая имеет
ориентацию, не позволяющую ей принять, в свою очередь, протон справа от другого
иона гидроксония.
Благодаря описанному движению протонов увеличивается электропроводность
раствора, потому что протоны имеют очень малый радиус и проходят не весь путь до
катода, а лишь расстояния между молекулами воды. Этот тип проводимости можно
назвать -эстафетным, или цепным .
Аналогично можно объяснить большую подвижность гидроксильных ионов, только в
этом случае переход протонов происходит не от ионов гидроксония к молекулам
воды, а от молекул воды к ионам гидроксила, что приводит к кажущемуся
перемещению ионов гидроксила по направлению к аноду.
Ионы гидроксила действительно появляются в анодном пространстве, но это
объясняется в основном не движением их, а перескоком протонов по направлению к
катоду.
Если количества ионов Н3О+ и ОН- одинаковы, то число перескоков протонов по
схеме Н3О+ + Н2О —> Н2О + Н3О+ будет больше, чем число перескоков по схеме Н2О +
НО- —> НО- + Н2О, так как энергетическое состояние водорода в молекуле воды
соответствует более глубокому минимуму потенциальной энергии (потенциальной
яме), чем в ионе Н3О+ . Этим и объясняется меньшая подвижность иона гидроксила.
Конечно, ионы Н3О+ и ОН- , как таковые, также движутся при создании разности
потенциалов между электродами и переносят электричество, но вклад их в
электропроводность, вероятно, приблизительно такой же, как и вклад других ионов.
Большая электропроводность кислот и оснований объясняется именно цепным
механизмом электропроводности с участием протонов.
4. Числа переноса.
Переносчиками тока в растворах электролитов служат ионы, но так как абсолютные
скорости движения анионов и катионов в данном растворе неодинаковы, то большую
долю тока всегда переносят более быстрые ионы. Величину, при помощи которой
можно выразить долю электричества, переносимого ионами данного вида, называют
числом переноса; для катионов оно обозначается через t+, для анионов — через t-.
Количество электричества Q, перенесенное ионами i-гo вида через данное сечение
раствора электролита, определяется по уравнению
Q=ziFciui sτ , (36)
где zi - валентность; ci -концентрация, моль/м3; ui — абсолютная скорость ионoв
i-го вида, м2·с-1·В-1; s — площадь сечения, м2; τ— βремя, с. Число переноса ti
определяется соотношением
, (37)
где Q — количество электричества, перенесенное всеми нонами. На основании
формулы (37) можно сказать, что число переноса иона — это доля электричества,
перенесенная ионами данного вида. В частности, для раствора сильного электролита
вместо уравнения (37) можем написать
; (38)
Подставляя выражение (36) в (38) и учитывая условие электронейтральности
z+c+=z-c-, получаем
; (39)
При этом
t+ + t- = 1 (40)
Различие в скоростях движения анионов и катионов приводит к тому, что они
переносят разные количества электричества, но это не влечет за собой нарушения
электронейтральности раствора, а лишь изменяет концентрацию электролита у катода
и анода. Связь между числами переноса, подвижностями ионов и изменением
содержания электролита в катодном и анодном отделениях можно установить,
составив материальный баланс процесса электролиза. На рис.3 приведена схема
электролиза соляной кислоты. Электродами служат пластинки из инертного металла
(платины). Пространство между электродами разделено двумя пористыми диафрагмами
на три отделения:
катодное, среднее и анодное. Если пропустить через раствор 1 фарадей
электричества, то по закону Фарадея на электродах выделится по 1 г/моль водорода
и хлора:
(на катоде) H+ + ē → ½ H2 (г) (41)
(на аноде) Cl- → ½ Cl2 (г) + ē (42)
При этом через раствор пройдет t+ г/моль катионов (ионов водорода) от анода к
катоду и t- г/моль анионов (ионов хлора) от катода к аноду. Катионы перенесут
через данное поперечное сечение раствора электролита t+ фарадеев электричества
от анода к катоду, а анионы перенесут в обратном направлении t- фарадеев. Всего
катионы и анионы перенесут через поперечное сечение электролита t+ + t- =
1фарадей, или F Кл электричества.
В катодном отделении на катоде из раствора выделяется 1 г/моль ионов водорода.
Из среднего отделения через диафрагму поступает в катодное отделение t+ г/моль
ионов водорода (t+H+) и из катодного отделения в среднее отделение уходит t-
г/моль ионов хлора (t-Cl-). В результате получаем материальный баланс ионов H+и
Cl- (в г/моль) в катодном отделении:
-1H+ + t+H+ - t-Cl- = -(1-t+)H+ - t-Cl- (43)
Учитывая соотношение (40), получаем
-t- H+ - t-Cl- или - t- НС1 (44)
Таким образом, в результате протекания через электролизер одного фарадея
электричества содержание НС1 в катодном отделении уменьшилось на t- г/моль.
В анодном отделении на аноде из раствора выделяется 1 г/моль ионов Cl-. Из
среднего отделения в анодное отделение поступает t- г/моль ионов Cl- и из
анодного отделения в среднее уходит t+ г/моль H+ . В результате получим
материальный баланс ионов H+ и Cl- в анодном отделении:
-t+H+ - 1Cl- +t-Cl- = -t+H+ - (1 - t- ) Cl- (45)
или -t+H+ - t+Cl- , или –t+HCl.
Из этого материального баланса видно, что в результате протекания через
электролизер одного фарадея электричества содержание НС1 в анодном отделении
уменьшилось на t+ г/моль.
В среднем отделении электролизера содержание НС1 не изменится, так как через обе
диафрагмы проходит одинаковое число г/моль ионов Н+ в одном направлении и
соответственно ионов С1- в другом направлении:
-t+H+ + t+H+ + t-Cl- - t-Cl- = 0 (46)
Если при пропускании через электролизер Q кулонов электричества содержание НС1 в
катодном отделении уменьшилось на Δnк моль-экв и в анодном отделении на Δnа
моль-экв, то будут справедливы соотношения
; ; (47)
Таким образом, по изменению содержания электролита в катодном и анодном
отделениях при электролизе можно определить числа переноса ионов. Этот способ
определения чисел переноса называется способом Гитторфа.
Уравнение (47) справедливо, когда катион и анион электролита выделяются на
электродах из инертного материала.
При электролизе раствора сульфата меди (II) с медными электродами на катоде
разряжается ион меди:
Cu2++2 ē → Cu (48)
а на аноде происходит растворение меди из электрода:
Cu → Cu2++2 ē
При пропускании одного фарадея электричества через такой электролит из анода в
раствор перейдет 1 моль-экв ионов меди. Из материального баланса в анодном
отделении получим, что содержание электролита в нем увеличивается на t-
моль-экв. При этом вместо соотношений (47) получим
t- =FΔnк/Q = FΔnа /Q (48)
где Δnк= Δnа ; Δnк - убыль электролита в катодном отделении, моль-экв;
Δnа — прибыль электролита в анодном отделении, моль-экв.
Между числами переноса и подвижностями ионов в растворах сильных электролитов
существует зависимость.
λ+/ λ- = u+/u- = t+/t-, (49)
или
λ+/( λ+ + λ-) = t+/( t+ + t-) и λ-/( λ+ + λ-)= t-/( t+ + t-) (50)
λ+ = Λt+ и λ- = Λt- (51)
Числа переноса остаются практически постоянными до тех пор, пока концентрация
сильного электролита не превышает 0,2 моль/л; при дальнейшем увеличении
концентрации наблюдается их изменение. Например, для водного раствора NaCI при
291 К и с = 0,005 моль/л число переноса иона натрия t+ равно 0,396, а при с= 1,0
моль/л t+= 0,369; в соответствии с уравнением (40) числа переноса иона хлора при
этом равны 0,604 и 0,631.
С ростом температуры абсолютные скорости ионов и подвижности ионов
увеличиваются, но не в одинаковой мере. Поэтому числа переноса с изменением
температуры также меняются. При этом если число переноса катиона увеличивается,
то согласно соотношению (40) число переноса аниона уменьшается, и наоборот.
Для сильных электролитов значение Λ∞ определяется обычно линейной экстраполяцией
опытных кривых, вычерченных в координатах Λ-до значений с=0. Для слабых
электролитов значения Λ∞ , вычисленные непосредственно по опытным данным,
получаются неточными, так как в разбавленных растворах молярная электрическая
проводимость слабых электролитов меняется очень резко. Поэтому значения Л я,
растворов слабых электролитов рассчитываются обычно по значениям Λ∞+ и Λ∞- ,
найденным по опытным данным электрической проводимости растворов сильных
электролитов.
5. Закон разбавления Оствальда.
При диссоциации слабого электролита устанавливается равновесие между
недиссоциированными молекулами и ионами. Рассмотрим простейший пример, когда
молекула распадается только на два иона:
СН3СООН + Н2О = СН3СОО- + Н3O+ (52)
На основании закона действия масс имеем
(53)
Как всякая константа равновесия, Кa зависит от температуры. Активность
растворителя (в данном случае — воды) в разбавленных растворах можно считать
постоянной. Это позволяет перенести aH2O в уравнении (53) в левую часть.
Обозначим произведение KaaH2O через Kд, CH3COOH. Тогда
(54)
Величина Kд называется термодинамической константой диссоциации или сокращенно
константой диссоциации.
Вода—тоже электролит, но не сильный, так как слабо диссоциирует на ионы;
одновременно она является и растворителем. В связи с этим реакция диссоциации
идет по уравнению
H2O + H2O = H3O+ + OH-
На основании закона действия масс имеем
(55)
Поскольку концентрация образующихся ионов ОН- и H3O+ очень невелика, активность
недиссоциированных молекул воды можно считать не зависящей от степени
диссоциации. Перенесем aH2O в левую часть и обозначим произведение KaaH2O через
Kд, H2O. Тогда
(56)
Величина Kд, H2O представляет собой термодинамическую константу диссоциации
воды, а произведение Kд,H2OaH2O обозначается через Kw, и называется ионным
произведением воды:
Kw = aH2OaOH-
Термодинамическая константа диссоциации и ионное произведение воды зависят от
температуры. Обычно изменение константы диссоциации с повышением температуры
невелико, например для кислот, с повышением температуры от 0 до 20 °С константа
диссоциации изменяется всего на 3—8%. Ионное произведение воды в этом же
интервале температур возрастает более чем в 6 раз.
Значения термодинамических констант диссоциации слабых кислот, растворенных в
воде, проходят через максимум, который для приведенных в таблице кислот лежит в
интервале между 0 и 60 °С. Это можно объяснить влиянием двух противоположно
направленных воздействий. С одной стороны, всякая диссоциация протекает с
поглощением тепла, и, следовательно, при повышении температуры равновесие должно
смещаться в сторону большей степени диссоциации. С другой стороны, при повышении
температуры диэлектрическая проницаемость воды, служащей растворителем,
уменьшается, а это способствует воссоединению ионов. Максимального значения
константа диссоциации достигает при той температуре, при которой влияние второго
фактора начинает преобладать,
Ионное произведение воды с повышением температуры непрерывно возрастает.
Заменив активности произведениями аналитических концентрации на соответствующие
коэффициенты активности, получим, например, пользуясь моляльностью
(57)
Обозначим
(58)
Тогда
(59)
Совершенно так же можно выразить термодинамическую константу диссоциации через
молярность с и соответствующие коэффициенты активности f. Обозначив
(60)
получим
(61)
Выразим общую концентрацию электролита в моль/л через с (молярность), степень
диссоциации обозначим через α. Тогда
[СН3СОO-] = сα; [Н3O+] = сα; [СН3СОOH] = с (1 - α)
Уравнение для kc принимает вид
(62)
Последнее равенство является простейшей формой закона разведения,
сформулированного Оствальдом в 1888 г. Очевидно, что чем больше kc, тем выше
степень диссоциации. Таким образом, величина kc может служить мерой силы
кислоты, т. е. мерой кислотности. Для умеренно слабых электролитов, например
Н3РO4 (первая ступень), Са(ОН)2, СНСl2СООН, значения kc лежат в пределах от 10-2
до 10-4. Для слабых электролитов, например СН3СОOH, NH4OH, kc = 10-5 — 10-9. При
kc<10-10 электролит считается очень слабым. Такими электролитами являются H2O,
C6H5OH, HCN.
Если степень диссоциации очень мала, то величиной α можно пренебречь по
сравнению с единицей, и формула (46) примет вид
kc = cα2 или α (63)
т. е. степень диссоциации обратно пропорциональна корню квадратному из
концентрации электролита.
Если электролит распадается больше чем на два иона, то зависимость kc от степени
диссоциации соответственно усложняется. Например, при диссоциации CaCl2 имеем
[Ca2+] = cα; [Cl-] = 2cα и [СаС12] = с (1 - α)
откуда
(64)
Соответственно при малой степени диссоциации
Можно отметить, что для электролитов, распадающихся на два иона, значение kc
равно четверти концентрации, при которой α = 1/2.
В разбавленных растворах значения подвижностей U и V незначительно отличаются от
предельных значений подвижностей (U ≈ U0 и V ≈ V0), поэтому, разделив выражение
(47) на уравнение (48), получим уравнение
(65)
Подставив выражение (49) в формулу (46), получим
(66)
Величина kc является постоянной только для очень разбавленных растворов,
коэффициенты активности которых можно считать равными единице. Вообще же kc —
величина переменная. Некоторые авторы называют kc классической константой
диссоциации, но правильнее её называть классической функцией диссоциации или
просто функцией диссоциации.
Если ионная сила раствора достаточно мала, то коэффициент активности
недиссоциированной уксусной кислоты fCH3COOH близок к единице и уравнение (60)
примет вид:
Kд, CH3COOH = kcfCH3COO- fH3O+ (67)
Величина Kд, CH3COOH в уравнениях (51) и (44), т.е. термодинамическая константа
диссоциации, не зависит от концентрации.
6. Электрофоретический и релаксационный эффекты в электролитах, их влияние на
электрическую проводимость.
Теория электролитической диссоциации Аррениуса не учитывала влияния концентрации
на подвижность ионов, хотя, как выяснилось, влияние концентрации на подвижность
может быть весьма существенным. Уменьшение эквивалентной электропроводности с
концентрацией Аррениус объяснял не уменьшением подвижности ионов, а уменьшением
степени диссоциации.
Как уже было сказано, Кольрауш вывел эмпирическое уравнение, связывающее
эквивалентную электропроводность сильных электролитов с концентрацией:
λ = λ∞ - А
Так как λ∞ = U∞ + V∞ и λ = U + V , то следовательно,
U = U∞ - В1 и V = V∞ - В2
где В1 + В2 = А.
Дебай и Хюккель объясняли уменьшение подвижности ионов и эквивалентной
электропроводности λ сильных электролитов с увеличением концентрации наличием
ионной атмосферы. Действительно, каждый ион окружен ионной атмосферой, состоящей
преимущественно из ионов противоположного центральному иону знака, плотность
которой увеличивается с повышением концентрации электролита.
При наложении электрического поля ион начинает двигаться в одну сторону, а
ионная атмосфера — в противоположную. Движение ионов разных зарядов, при этом
сольватированных, в противоположных направлениях создает как бы дополнительное
трение, которое и уменьшает абсолютную скорость движения ионов. Этот эффект
торможения носит название электрофоретического эффекта. По мере увеличения
концентрации плотность ионной атмосферы увеличивается, следовательно,
увеличивается и тормозящий электрофоретический эффект.
Не следует думать, что при беспорядочном движении иона его ионная атмосфера
движется вместе с ним как одно целое. При движении ион покидает свою ионную
атмосферу и непрерывно на пути своего движения создает новую. Этот процесс
разрушения старой и образования новой ионной атмосферы протекает хотя и быстро,
но не мгновенно, вследствие чего при движении иона нарушается симметричность
ионной атмосферы, причем плотность ее больше позади движущегося иона. Очевидно,
появление асимметрии ионной атмосферы также вызывает некоторое торможение
поступательного движения иона, которое получило название эффекта асимметрии или
релаксации. Таким образом, из-за наличия ионной атмосферы при движении иона
возникают два тормозящих эффекта: электрофоретический, обусловленный движением
ионной атмосферы в сторону, противоположную направлению движения иона, и эффект
релаксации обусловленный асимметрией ионной атмосферы.
Убедительным подтверждением правильности представлений Дебая и Хюккеля является
так называемый эффект Вина, обнаруженный в 1927 г. Если уменьшение подвижности
ионов с увеличением концентрации объясняется наличием ионной атмосферы, то
уничтожение последней должно привести к возрастанию подвижности, а
следовательно, и электропроводности до предельного значения. Поскольку скорость
движения иона пропорциональна напряжению, а скорость образования ионной
атмосферы является конечной величиной, то, очевидно, путем увеличения
напряженности можно добиться такой большой скорости движения ионов, при которой
ионная атмосфера уже не будет успевать образовываться. Тогда, покинув свои
ионные атмосферы (которые немедленно разрушаются), ионы будут двигаться уже без
них, а следовательно, будут обладать максимальной скоростью движения и
предельной Подвижностью. Это и было установлено Вином, который увеличив
напряженность поля 200000 в/см, наблюдал увеличение эквивалентной
электропроводности до предельного значения λ∞.
Интересно отметить, что в слабых электролитах эффект Вина оказался гораздо
больше, чем в сильных. Это обстоятельство указывает на увеличение степени
диссоциации растворенных молекул под влиянием электрического поля большой
напряженности.
В 1928 г. Дебай и Фалькенгаген теоретически рассмотрели влияние частоты
переменного тока на электропроводность электролитов и установили, что при
увеличении частоты выше некоторого значения должно наблюдаться заметное
возрастание электропроводности. Явление увеличения электропроводности с частотой
получило название частотного эффекта или дисперсии электропроводности и было
экспериментально подтверждено рядом исследователей.
Дебай и Фалькенгаген показали, что при достаточно большой частоте переменного
тока взаимные смещения иона и ионной атмосферы настолько малы, что ионная
атмосфера практически симметрична, а потому тормозящий эффект релаксации,
обусловленный асимметрией ионной атмосферы, должен исчезнуть. Время релаксации
ионной атмосферы θ есть время, по истечении которого ионная атмосфера исчезает
после удаления центрального иона (и, очевидно, образуется вновь вокруг иона,
появившегося в новой точке). Величина θ (в сек) определяется, по теории Дебая —
Фалькенгагена, уравнением:
где с — концентрация, г-экв/л.
Частота переменного тока v, при которой можно ожидать возрастания
электропроводности,—это величина, обратная времени релаксации
Для растворов одновалентных солей при с = 0,001 эффект Дебая—Фалькенгагена
проявляется при частоте 109 колебаний в секунду. При больших частотах эффект
релаксации исчезает. Электрофоретический эффект остается, так как ионная
атмосфера не уничтожается.
Следовательно, частотный эффект должен быть меньшим, чем эффект Вина, и,
сопоставляя значения того и другого, можно расчленить суммарный эффект
уменьшения электропроводности на составляющие, обусловленные электрофоретическим
и релаксационным торможениями. Действительно, эффёкт Вина возникает при полном
уничтожении ионной атмосферы, а следовательно, и обоих эффектов торможения.
Частотный эффект объясняется лишь исчезновением симметрии ионной атмосферы. Опыт
показывает, что последний эффект примерно в 3 раза слабее, чем эффект Вина, т.
е. электрофоретический эффект в 2 раза сильнее эффекта релаксации.
Опыты Вина и Дебая-Фалькенгагена являются убедительным экспериментальным
доказательством реального существования ионной атмосферы и позволяют представить
себе характер ее строения. Представление о ионной атмосфере является одним из
фундаментальных положений электростатической теории электролитов.
В дальнейшем, развивая эти идеи, Онзагер вывел теоретическое уравнение, которое
количественно связывает эквивалентную , электропроводность с концентрацией и
позволяет вычислить электрофоретический и релаксационный эффекты. Для бинарных
одновалентных водных электролитов уравнение Онзагера имеет вид
где слагаемое характеризует эффект релаксации;
слагаемое характеризует электрофоретический эффект;
D—диэлектрическая проницаемость;
T — температура;
с" — концентрация.
Теоретическое уравнение Онзагера согласуется с эмпирической формулой Кольрауша - А в интервале средних концентрации, что является существенным доводом в
пользу электростатической теории электролитов.
7. Методы измерения электропроводности электролитов
Для точного измерения электропроводности электролитов необходимо выполнить ряд условий:
1) точно измерить температуру и поддерживать ее постоянной с помощью термостата; 2) устранить поляризацию электродов (т. е. изменение состояния поверхности
электродов и концентрации электролита вокруг электродов в процессе измерений)
Поляризацию можно устранить платинированием платиновых электродов (т. е.
покрытием их путем электролиза тонким слоем платиновой черни и, таким образом,
увеличением поверхности электродов) и применением переменного тока с частотой
500—2000 гц для устранения концентрационной поляризации.
3) точно измерить электрические величины.
Оборудование для измерения:
Сосуд снабжен двумя одинаковыми плоскими параллельными электродами, закрепленными так, чтобы расстояние между ними не изменялось.
На рис. 3 показаны формы сосудов, рекомендуемых для определения электропроводности при больших (рис. 3,а) и при малых (рис. 3,б) концентрациях.
Схема установки для определения электропроводности показана на рис. 4. Прибор представляет собою контур обе. Между b и с в цепь включен сосуд для измерения электропроводности. Сопротивление его обозначено через W, между а и с—магазин сопротивления R. Отрезок ab представляет собой тонкую металлическую (Pt, Mn, манганиновую и т. п.) однородную проволоку длиной в 1 м, натянутую на линейку с делениями. В точках а и b подсоединяются провода, по которым подается переменный ток от вторичной обмотки катушки Румкорфа v или от генератора звуковой частоты.
Для определения сопротивления жидкостей применяют переменный ток, а не
постоянный во избежание электролиза и поляризации. При переменном токе очень
чувствительным инструментом, обнаруживающим присутствие или отсутствие тока.
является низкоомный телефон (в последнее время применяется катодный
осциллограф). Телефон включается между точкой с и подвижным контактом d.
Сопротивление раствора определяется при таком положении контакта d, при котором
в телефонной трубке не слышно никакого звука, и следовательно, ток в линии cd
отсутствует. При этом положении контакта согласно закону Кирхгофа сопротивления
R, W, r1, r2 связаны соотношением
R/W = r1/r2
Если проволока однородна, то сопротивления r1 и r2 отрезков ad и db
пропорциональны длинам этих отрезков, т. е.
R/W = ad/ab или W = R db/ab
Общее сопротивление сосуда с раствором и удельное сопротивление раствора ρ
связаны соотношением
W = ρ l/ или М = ρc
где с = l/s;l — расстояние между электродами; s—площадь каждого из электродов.
Величина с называется емкостью сопротивления сосуда. Удельная электропроводность
x = 1/ρ, θ следовательно
x = c/W
Емкость с сосуда находится по этой же формуле. Для этого измеряется
сопротивление W залитого в сосуд раствора хлористого калия с известной удельной
электропроводностью.
Использование переменного тока позволяет измерять электропроводность
электролитов с высокой точностью, но при этом возникают затруднения, связанные с
наличием электрической емкости и самоиндукции (особенно первой) в электрической
схеме, тогда как необходимо измерять толькоомическое сопротивление. При
использовании постоянного тока перечисленные затруднения отпадают, но возникает
концентрационная поляризация. Чтобы избежать появления концентрационной
поляризации, измеряют разность потенциалов между специальными, строго обратимыми
электродами, расположенными на значительном расстоянии от питающих электродов.
Современная потенциометрия позволяет измерять Е с точностью до 0,0001%.
На рис. 5 изображен один из сосудов, где С и D— электроды для измерения разности потенциалов, а А и B - питающие электроды. Измеряется разность потенциалов Е, при токе постоянной силы между электродами А и B и разность потенциалов Ео на концах точно известного сопротивления Wo, включенного последовательно с сосудом;
очевидно, искомое сопротивление W1 определяется из соотношения
E1/W1 = E0/W0
Применение:
Электролиты чрезвычайно важны в науке и технике. Все жидкие системы в живых
организмах содержат электролит. Важный класс электролитов - полиэлектролиты.
Электролиты являются средой для проведения многих химических синтезов и
процессов электрохимических производств. При этом всё большую роль играют
неводные растворы электролитов. Благодаря им возможно создания новых химических источников тока и совершенствования технологических
процессов разделения веществ - экстракции из растворов и ионного обмена.
Список используемой литературы:
Курс физической химии, т. II, под ред. чл.-корр. АН СССР проф. Я.И. Герасимова. Издание 2, испр., М. – Химия, 1973. – 624 стр.
Лопанов А.Н. Физическая химия: учебно-практическое пособие. – Белгород: изд-во БелГТАСМ, 2001. – 134 стр.
Стромберг А.Г., Семченко Д.П. Физическая химия: Учеб. для хим. спец. вузов / Под ред. А.Г. Стромберга. – 3-е изд., испр. и доп. – М.: Высшая школа, 1999. – 527 стр.: ил.