Динамика материальной точки. Работа и мощность.

1.54. Чтобы определить коэффициент трения k между деревянными поверхностями, брусок положили на доску и стали поднимать один конец доски до тех пор, пока брусок не начал по ней скользить. Это произошло при угле наклона доски α = 14°. Чему равен k?

1.55. Два соприкасающихся бруска лежат на горизонтальном столе, по которому они могут скользить без трения. Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Один из брусков толкают с силой F0=10,0 Н (рис. 1.9). Найти: 1. Силу F, с которой бруски давят друг на друга в случае, если сила F0, приложена к бруску 1 (а), к бруску 2 (б). 2. Что примечательного в полученных результатах?

1.56. Решить задачу 1.55 в предположении, что коэффициент трения между бруском и столом равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2.

1.57. Решить задачу 1.56, положив k1=0,200 и k2=0,100. Сопоставить результаты задач 1.55, 1.56 и данной задачи.

1.58. Два соприкасающихся бруска скользят по наклонной доске (рис. 1.10). Масса первого бруска m1=2,00 кг, масса второго бруска m2=3,00 кг. Коэффициент трения между бруском и доской равен k1=0,100 для бруска 1 и k2=0,200 для бруска 2. Угол наклона доски α=45°. 1. Определить: а) ускорение ω, с которым движутся бруски, б) силу F, с которой бруски давят друг на друга. 2. Что происходило бы в случае k1>k2?

1.59. На горизонтальном столе лежат два тела массой M=1,000 кг каждое. Тела связаны невесомой нерастяжимой нитью (рис. 1.11). Такая же нить связывает тело 2 с грузом массы m=0,500 кг. Нить может скользить без трения по изогнутому желобу, укрепленному на краю стола. Коэффициент трения первого тела со столом k1=0,100, второго тела k2=0,150. Найти: а) ускорение ω, с которым движутся тела, б) натяжение F12 нити, связывающей тела 1 и 2, в) натяжение F нити, на которой висит груз.

1.60. Эстакада на пересечении улиц имеет радиус кривизны R=1000 м. В верхней части эстакады в дорожное покрытие вмонтированы датчики, регистрирующие силу давления на эстакаду. Отмечающий эту силу прибор проградуирован в кгс (1 кгс=9,81 Н). Какую силу давления F показывает прибор в момент, когда по эстакаде проезжает со скоростью v=60,0 км/ч автомобиль массы m=1,000 т?

1.61. На заряженную частицу, движущуюся в магнитном поле, действует магнитная сила F=q [vB] (q — заряд частицы, v — ее скорость, B — характеристика поля, называемая магнитной индукцией). Найти уравнение траектории, по которой будет двигаться частица в однородном магнитном поле (т. е. поле, во всех точках которого В одинакова по модулю и направлению) в случае, если в начальный момент вектор v перпендикулярен к В. Никаких сил, кроме магнитной, нет. Известными считать массу m, заряд q и скорость v частицы, а также магнитную индукцию поля B. В качестве координатной плоскости x, y взять плоскость, в которой движется частица.

1.62. Шарик массы m=0,200 кг, привязанный к закрепленной одним концом нити длины l=3,00 м, описывает в горизонтальной плоскости окружность радиуса R= 1,00 м. Найти: а) число оборотов n шарика в минуту, б) натяжение нити F.

1.63. Горизонтально расположенный диск вращается вокруг проходящей через его центр вертикальной оси с частотой n=10,0 об/мин. На каком расстоянии r от центра диска может удержаться лежащее на диске небольшое тело, если коэффициент трения k=0,200?

1.64. Небольшому телу сообщают начальный импульс, в результате чего оно начинает двигаться поступательно без трения вверх по наклонной плоскости со скоростью v0=3,00 м/с. Плоскость образует с горизонтом угол α=20,0°. Определить: а) на какую высоту h поднимется тело, б) сколько времени t1 тело будет двигаться вверх до остановки, в) сколько времени t2 тело затратит на скольжение вниз до исходного положения, г) какую скорость v имеет тело в момент возвращения в исходное положение.

1.65. Решить задачу 1.64 в предположении, что коэффициент трения между телом и плоскостью k=0,100. Масса тела m=1,00 кг. Помимо указанных в предыдущей задаче величин, определить: д) какую работу А совершает сила трения на всем пути снизу вверх и обратно. Сравнить результаты задачи 1.64 и данной задачи.

1.66. Шарик массы m помещен в высокий сосуд с некоторой жидкостью и отпущен без толчка. Плотность жидкости в η раз меньше плотности шарика. При движении шарика возникает сила сопротивления среды, пропорциональная скорости движения: F=-kv. а) Описать качественно характер движения шарика. б) Найти зависимость скорости шарика v от времени t.

1.67. Тонкая стальная цепочка с очень мелкими звеньями, имеющая длину l=1,000 м и массу m=10,0 г, лежит на горизонтальном столе. Цепочка вытянута в прямую линию, перпендикулярную к краю стола. Конец цепочки свешивается с края стола. Когда длина свешивающейся части составляет η=0,275 длины l, цепочка начинает соскальзывать со стола вниз. Считая цепочку однородной по длине, найти: а) коэффициент трения k между цепочкой и столом, б) работу А сил трения цепочки о стол за время соскальзывания, в) скорость v цепочки в конце соскальзывания.

1.68. Тонкая стальная цепочка с очень мелкими звеньями висит вертикально, касаясь нижним концом стола. Масса цепочки m, длина l. В момент t=0 цепочку отпускают. Считая цепочку однородной по длине, найти: а) мгновенное значение F(t) силы, с которой цепочка действует на стол, б) среднее значение <F> этой силы за время падения.

1.69. Сила, действующая на частицу, имеет вид F=aex(H), где a — константа. Вычислить работу А, совершаемую над частицей этой силой на пути от точки с координатами (1, 2, 3) (м) до точки с координатами (7, 8, 9) (м).

1.70. Частица движется равномерно по окружности. Чему равна работа А результирующей всех сил, действующих на частицу: а) за один оборот, б) за полоборота, в) за четверть оборота?

1.71. Частица перемещается по окружности радиуса r под действием центральной силы F. Центр окружности совпадает с силовым центром. Какую работу А совершает сила F на пути s?

1.72. Тангенциальное ускорение wτ частицы массы m, движущейся по некоторой криволинейной траектории, изменяется с расстоянием s, отсчитанным вдоль траектории от некоторого начального положения частицы, по закону ωττ(s). Написать выражение для работы A, совершаемой над частицей всеми действующими на нее силами, на участке траектории от s1 до s2.

1.73. Тело массы m=1,00 кг падает с высоты h=20,0 м. Пренебрегая сопротивлением воздуха, найти: а) среднюю по времени мощность <P>, развиваемую силой тяжести на пути h, б) мгновенную мощность P на высоте h/2.

 

1.74. Брошенный камень массы m поднимается над уровнем, на котором находится точка бросания, на высоту h. В верхней точке траектории скорость камня равна v. Сила сопротивления воздуха совершает над камнем на пути от точки бросания до вершины траектории работу Aсопр. Чему равна работа A бросания камня?

1.75. Тело массы m брошено под углом α к горизонту с начальной скоростью v0. Пренебрегая сопротивлением воздуха, найти: а) мгновенную мощность P(t), развиваемую при полете тела приложенной к нему силой, б) значение мощности P в вершине траектории, в) среднее значение мощности <P>под за время подъема тела, г) среднее значение мощности <P>пол за все время полета (точка бросания и точка падения находятся на одном уровне).

1.76. Тело массы m начинает двигаться под действием силы F=2tex+3t2ey. Найти мощность P(t), развиваемую силой в момент времени t.

Ошибка в тексте? Выдели её мышкой и нажми CTRL + Enter

Остались рефераты, курсовые, презентации? Поделись с нами - загрузи их здесь!

Помог сайт? Ставь лайк!