Определить главный вектор $\vec{R}^{\,*}$ и главный момент \vec{M}_{O} системы сил относительно центра O и установить, к какому простейшему виду приводится эта система.

Размеры прямоугольного			Силы системы											
параллелепипеда см		P1			P2			P3			P4			
а	b	С	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление
20	30	10	10	0	OA	10	В	BF	10	D	DK	-	-	-

Решение

1. Определение модуля и направления главного вектора заданной системы сил по его проекциям на координатные оси.

Проекции главного вектора на оси координат

$$X = P_I = 10$$
 H

$$Y = P_3 = 10$$
 H

$$Z = P_1 = 10$$
 H

Модуль главного вектора

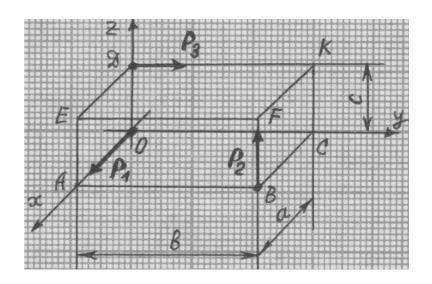
$$R^* = \sqrt{X^2 + Y^2 + Z^2} = 17.3$$
 H

Направляющие косинусы

$$\cos(\vec{R}^*, \vec{i}) = \frac{X}{R^*} = \frac{10}{17.3} = 0.578$$

$$\cos(\vec{R}^*, \vec{j}) = \frac{Y}{R^*} = \frac{10}{17.3} = 0.578$$

$$\cos(\vec{R}^*, \vec{k}) = \frac{Z}{R^*} = \frac{10}{17.3} = 0.578$$



2. Определение главного момента заданной системы сил относительно центра О. Главные моменты заданной системы сил относительно координатных осей:

$$M_X = b \cdot P_2 - c \cdot P_3 = 200$$
 H·cm
 $M_Y = -a \cdot P_2 = -200$ H·cm
 $M_Z = 0 = 0$
 $M_Q = \sqrt{{M_\chi}^2 + {M_V}^2 + {M_Z}^2} = 282.8$ H·cm

Направляющие косинусы:

$$\cos(\vec{M}_O, \vec{i}) = \frac{M_X}{M_O} = \frac{200}{282.8} = 0.707$$

$$\cos(\vec{M}_O, \vec{j}) = \frac{M_Y}{M_O} = \frac{-200}{282.8} = -0.707$$

$$\cos(\vec{M}_O, \vec{k}) = \frac{M_Z}{M_O} = \frac{0}{282.8} = 0$$

3. Вычисление наименьшего главного момента заданной системы сил.

$$M^* = \frac{X \cdot M_X + Y \cdot M_Y + Z \cdot M_Z}{R^*} = 0$$

4. Так как $R^* \neq 0, M^* = 0$, то заданная система сил приводится к равнодействующей.

Уравнение центральной оси:

$$M_X - (y \cdot Z - z \cdot Y) = 0$$

$$M_Y - (z \cdot X - x \cdot Z) = 0$$

$$M_Z - (x \cdot Y - y \cdot X) = 0$$

Подставляя в это уравнение найденные числовые значения величин, находим:

$$(1) 20 - y + z = 0$$

$$(2) -20 - z + x = 0$$

Координаты точек пересечения центральной осью координатных плоскостей определяем при помощи уравнений центральной оси (1) и (2) . Полученные значения помещены в таблице 2.

Таблица 2

Точки	Координаты, см						
ТОЧКИ	x	У	Z				
A1	0	0	-20				
A2	0	0	-20				
А3	20	20	0				

