Определить главный вектор \vec{R}^* и главный момент \vec{M}_O системы сил относительно центра O и установить, к какому простейшему виду приводится эта система.

Размеры прямоугольного			Силы системы											
параллелепипеда см		P1			P2			P3			P4			
а	b	С	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление	модуль, Н	точка приложения	направление
30	40	40	10	В	BK	16	С	СО	20	D	DF	-	-	-

Решение

1. Определение модуля и направления главного вектора заданной системы сил по его проекциям на координатные оси.

Проекции главного вектора на оси координат (рис. 1):

$$\cos \alpha = \frac{a}{\sqrt{a^2 + c^2}}, \sin \alpha = \frac{c}{\sqrt{a^2 + c^2}}, \cos \beta = \frac{b}{\sqrt{a^2 + b^2}}, \sin \beta = \frac{a}{\sqrt{a^2 + b^2}}.$$

$$X = \frac{-a}{\sqrt{a^2 + c^2}} \cdot P_1 + \frac{a}{\sqrt{a^2 + c^2}} \cdot P_3 = 6 \text{ H}$$

$$Y = -P_2 + \frac{b}{\sqrt{a^2 + b^2}} \cdot P_3 = 0$$

$$Z = \frac{c}{\sqrt{a^2 + c^2}} \cdot P_1 = 8 \text{ H}$$

Модуль главного вектора

$$R^* = \sqrt{X^2 + Y^2 + Z^2} = 10$$
 H

Направляющие косинусы

$$\cos(\vec{R}^*, \vec{i}) = \frac{X}{R^*} = \frac{6}{10} = 0.6$$

$$\cos(\vec{R}^*, \vec{j}) = \frac{Y}{R^*} = \frac{0}{10} = 0$$

$$\cos(\vec{R}^*, \vec{k}) = \frac{Z}{R^*} = \frac{8}{10} = 0.8$$

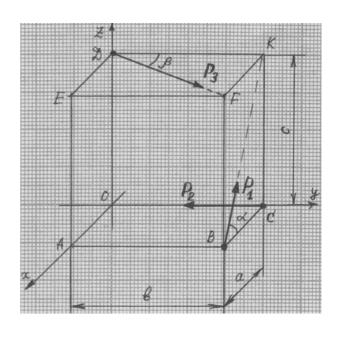


Рис. 1.

2. Определение главного момента заданной системы сил относительно центра О. Главные моменты заданной системы сил относительно координатных осей:

$$M_X = b \cdot \frac{c}{\sqrt{a^2 + c^2}} \cdot P_1 - c \cdot \frac{b}{\sqrt{a^2 + b^2}} \cdot P_3 = -320$$
 H·cm

$$M_{Y} = -a \cdot \frac{c}{\sqrt{a^2 + c^2}} \cdot P_I + c \cdot \frac{a}{\sqrt{a^2 + b^2}} \cdot P_3 = 240 \quad \text{H·cm}$$

$$M_Z = b \cdot \frac{a}{\sqrt{a^2 + c^2}} \cdot P_I = 240$$
 H·cm

$$M_O = \sqrt{M_\chi^2 + M_y^2 + M_z^2} = 466.5$$
 H·cm

Направляющие косинусы:

$$\cos(\vec{M}_O, \vec{i}) = \frac{M_X}{M_O} = \frac{-320}{466.5} = -0.686$$

$$\cos(\vec{M}_O, \vec{j}) = \frac{M_Y}{M_O} = \frac{240}{466.5} = 0.514$$

$$\cos(\vec{M}_O, \vec{k}) = \frac{M_Z}{M_O} = \frac{240}{466.5} = 0.514$$

3. Вычисление наименьшего главного момента заданной системы сил.

$$M^* = \frac{X \cdot M_X + Y \cdot M_Y + Z \cdot M_Z}{R^*} = 0$$

4. Так как $R^* \neq 0, M^* = 0$, то заданная система сил приводится к равнодействующей (рис. 2).

Уравнение центральной оси:

$$M_X - (y \cdot Z - z \cdot Y) = 0$$

$$M_Y - (z \cdot X - x \cdot Z) = 0$$

$$M_Z - (x \cdot Y - y \cdot X) = 0$$

Подставляя в это уравнение найденные числовые значения величин, находим:

(1)
$$40 + y = 0$$

(2)
$$120 - 3 \cdot z + 4 \cdot x = 0$$

Координаты точек пересечения центральной осью координатных плоскостей определяем при помощи уравнений центральной оси (1) и (2). Полученные значения помещены в таблице 2.

Таблица 2

Точки	Координаты, см						
ТОЧКИ	Х	у	Z				
A1	0	-40	40				
A2	-	-	-				
А3	-30	-40	0				

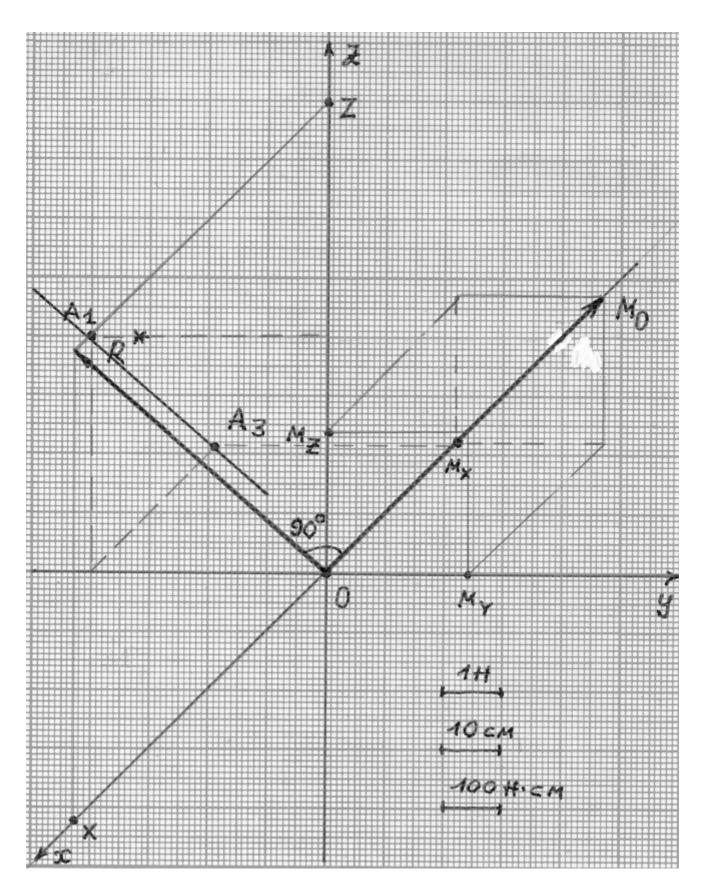


Рис. 2.